丁晓剑,毕业于西安交通大学计算机科学系获工学博士学位。南京财经大学信息工程学院高级工程师,硕士生导师,新加坡南洋理工大学访问学者。主要从事人工智能、机器学习、数据挖掘、包括多视图学习、多模态学习、聚类、特征选择和深度学习等以及在医疗辅助诊断等方向的科研工作,结合统计生物学和人工智能领域的前沿技术,为多视图时代的疾病的发生发展机理、患者的预后评估以及个性化医疗的实施探索新理论、新方法和新应用。主持省部级项目2项,参与国家及省部级项目10余项,广东省自然学科基金项目会评专家。已发表论文30余篇,其中多篇发表在 AAAI,IEEE/ACM TCBB,软件学报, 自动化学报等顶级会议及期刊上,申请发明专利8项,授权4项。
热烈欢迎数学/统计专业、计算机相关专业学生报考我组硕士,有意向者请发邮件:wjswsl(AT)163.com
代表性论文:
[1] Xiaojian Ding, Fan Yang. Multi-View Randomized Kernel Classification via Nonconvex Optimization [C]. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Vancouver, Canada, Feb 20-27, 2024. (CCF A)
[2] Xiaojian Ding, Yi Li and Shilin Chen. Maximum margin and global criterion based-recursive feature selection [J]. Neural Networks, 2024, vol. 169, pp. 597-606. (SCI, IF=7.8001, CCF B)
[3] Xiaojian Ding, Fan Yang, Fumin Ma and Shilin Chen. A Unified Multi-Class Feature Selection Framework for Microarray Data [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, vol. 20, no. 6, pp. 3725-3736. (SCI, IF=4.5003, CCF B)
[4] Xiaojian Ding, Fan Yang, Yaoyi Zhong, Jie Cao. A novel recursive gene selection method based on least square kernel extreme learning machine [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, vol. 19, no. 4, pp. 2026-2038. (SCI, IF=4.5003, CCF B)
[5] Xiaojian Ding, Jian Liu, Fan Yang, Jie Cao. Random compact Gaussian kernel: Application to ELM classification and regression[J]. Knowledge-Based Systems, 2021, 217: 106848. (SCI, IF= 8.139, CCF C)
[6] Xiaojian Ding, Fan Yang, Fumin Ma. An efficient model selection for linear discriminant function-based recursive feature elimination[J]. Journal of Biomedical Informatics, 2022, 129: 104070. (SCI, IF= 8, CCF C)
[7] Xiaojian Ding, Sheng Jin, Ming Lei, Jie Cao. A predictor-corrector affine scaling method to train optimized extreme learning machine[J]. Journal of the Franklin Institute, 2022, 359(2): 1713-1731. (SCI, IF= 4.0998)
[8] Xiaojian Ding, Fan Yang, Sheng Jin, Jie Cao. An efficient alpha seeding method for optimized extreme learning machine-based feature selection algorithm[J]. Computers in Biology and Medicine, 2021, 134: 104505. (SCI, IF= 6.698)
[9] Xiaojian Ding, Jian Liu, Fan Yang, Jie Cao. Random radial basis function kernel-based support vector machine[J]. Journal of the Franklin Institute, 2021, 358(18): 10121-10140. (SCI, IF=4.0998)
[10] Xiaojian Ding, Yuan Lan, Zhifeng Zhang, Xin Xu. Optimization extreme learning machine with ν regularization[J]. Neurocomputing, 2017, 261: 11-19. (SCI, IF= 5.998, CCF C)
[11] Xiaojian Ding, Baofang Chang. Active set strategy of optimized extreme learning machine[J]. Chinese science bulletin, 2014, 59(31): 4152-4160. (SCI, IF=18.90)
[12] Guangbin Huang, Hongming Zhou, Xiaojian Ding, Rui Zhang. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2): 513-529. (SCI, IF= 11.80, CCF B)
[13] 丁晓剑, 赵银亮. 无偏置支持向量回归优化问题[J]. 软件学报, 2012, 23(9): 2336-2346. (EI, CCF A)
[14] 丁晓剑, 赵银亮, 李远成. 基于 SVM 的二次下降有效集算法[J]. 电子学报, 2011, 39(8): 1766-1770. (EI, CCF A)
[15] 丁晓剑, 赵银亮. 优化极限学习机的序列最小优化方法[J]. 西安交通大学学报, 2011, 45(6): 7-12. (EI) (获西安交通大学学报2012最具学术影响力优秀论文和2013年度优秀学术论文,2013获领跑者5000中国精品科技期刊顶尖学术论文)
[16] 丁晓剑, 赵银亮. 偏置 b 对支持向量机分类问题泛化性能的影响[J]. 自动化学报, 2011, 37(9): 1105-1113. (EI, CCF A)
科研项目:
1,2016.7-2019.7,江苏省青年自然科学基金项目(主持),“基于深度学习和双谱分析的雷达辐射源识别技术”(项目编号:BK20160148)
2,2020.4-2024.4,江苏省重点研发计划(产业前瞻与关键核心技术)专项 “面向电力工业互联网的边缘智能代理设备的研发”(项目编号:BE2020001-1)
学生指导情况:
1.指导2017级学生李昕冉获得南京财经大学2021届本科生校级优秀毕业论文(设计)。
2.主持南京财经大学2021届本科生校级优秀毕业论文(设计)培育计划项目一项。
3.指导1名本科生在2020第十一届蓝桥杯全国软件和信息技术专业人才大赛全国总决赛或全国优秀奖。
4.指导5名本科生2020第十一届蓝桥杯全国软件和信息技术专业人才大赛江苏赛区获一等奖一项,二等奖一项,三等奖三项。
5. 指导1名研究生获2023第十四届蓝桥杯江苏赛区一等奖一项。